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1.1. INTRODUCTION AND DEFINITION OF THE PROBLEM

In this paper we are concerned exclusively with approximating real-valued
functions of a real variable by real polynomials, on the interval [-I, I].

Let Pn(A, x) = L;~o aixi E Pnand j (x) E L [-I, I] be the space of
integrable functions on [-1, 1]. Pn(A *, x) is defined to be a best L 1 ap­
proximation from Pn to j(x) on [-I, 1] if

Enl(f) == r Ij(x) - Pn(A*, x)1 dx ~ r If(x) - piA, x)1 dx
-1 -1

for all coefficient vectors A in Euclidean n + I-space. En1(1) shall be referred
to as the minimal, or best, L1 deviation offwith respect to Pn •

We denote by Ur(x) , the Chebyshev polynomial of the second kind of
degree r for all real r. By a U-polynomial of degree N, we mean an expression

N
of the form L;~o e;U;(x), where {e;};:o are real scalars. We let Pm •n denote
the class of all U-polynomials of degree n where em is fixed and nonzero for
a particular m ~ n.

It follows from the argument in [1, p. 10] that there exists a P:',n E Pm.n
such that forj(x) EL[-I, 1]:

E;".n(f) = rIj(x) - P;:;,n(X)! dx ~rI j(x) - Pm.n(X)[ dx
-1 -1

for all Pm.n E Pm.n .
This P;:',n is defined to be a partial best L1 approximation to f from Pn .

The motivation for investigating the partial minimum phenomenon in L 1

for this class of rational functions, stems from its analogue in uniform
approximation. There, taking the Fourier expansion in Chebyshev poly­
nomials of the first kind, Rivlin [5] has shown that the truncated series
polynomial, suitably modified, is the best uniform approximation.
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1.2. BEST APPROXIMATION

PROPOSITION. For A, fL real, I A I > 1, fL #- 0, the/unctions

(i) g(x) = A~ x

1
(iia) g(x) = A2 _ x2

1
(iiia) g(x) = 2 + 2

fL x

(iib) () xg x = \2 2
1\ - X

(iiib) () xg x = fL2 + x2

all have their unique best L1 approximations on [-1, 1] from Pn given by the
polynomial interpolating g(x) at the roots 0/ Un+l(x) (cf [4, Theorems 4.3
and 4.4]).

Explicit expressions can be found for the L 1 deviation of these functions
and their asymptotic behavior for k large is tabulated here:

(i) Ek1 ( 1 ) r"'-' 4(A - (A2 - 1)1/2)k+2
A-X

(iia) E1 ( 1 ) = £1 ( 1 ) r"'-' ~ (A _ (A2 _ 1)1/2)2k+32k A2 _ x2 2k+l A2 - x2 A

(iib) £~k+l ( ;\.2 ~ x2 ) = £~k+2 ( ;\.2 ~ x2 ) r"'-' 4(A - (A2 - 1)1/2)2k+4

(iiia) £1 ( 1 ) = £1. ( 1 ) r"'-' ~ «1 + ll.2)1/2 _ ll.)2k+3
2k fL2 + x2 2k+1 fL2 + x2 fL r r

(iiib) £1 ( x ) _ £1 ( X ) '"" 4«1 + 2)1(2 _ )2k+42k+l fL2 + x2 - 2k+2 fL2 + x2 fL fL·

The case g(x) = 1/(A - x) has been treated in [1, Addenda, Sects. 31, 32]
and the others may be similarly derived.

1.3. SOME LEMMAS

We first present a sufficient condition for partial best L 1 approximations,
(c.f. [2, Corollary 1.5]).

LEMMA 1. Let f(x) E L[-I, 1]. Then P;;',n is a best L1 approximation to /
from Pm •n if

r sign(f(x) - P;;;.n(x)) U,(x) dx = °
-1

j = 0, 1, ... , n; j =1= m.
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In the case n = m, f E C[-1, 1], it is also true that p:;',n is unique by extending
the arguments in [4, Sect. 4.5].

DEFINITION (i). Let cxv[v = 1,... , m] be the real or complex-conjugate
roots of the polynomial

p",(x) = fI (1 - : ) m > 0 (Ll)
11=1 v

where p",(x) is positive in the interior of the interval [-1, 1] but is allowed
simple roots at one or both ends of the interval. If m = 0, we interpret this
product as 1. p",(x) as expressed in (Ll) is defined to be in its canonical form.

We now introduce the mapping x = O/2)(v + (l/v».
The real variable x, I x I ~ 1 is then related to the complex value v by the

equation

I v 1= 1 1m v> O.

DEFINITION (ii). Define the complex constants Cv by

Then

I Cv I ~ 1 [v = 1,... , m]

DEFINITION (iii). Define H",(v) to be the modified image under the
mapping x = (l/2)(v + (l/v» of the canonical polynomial Pm{x) by

'"
Hm(v) = n(v - cv).

v~1

LEMMA 2. With Pm(x) defined as in Definition (i) and H",(v) defined as
in Definition (iii) we have that for n > m

u (x P ) == K [vn+I-2m Hm(v) _ v2m-n-1 Hm(l/V)] Pm(x)
n , m n+l.'" HmO/v) Hm(v) V - (l/v)

is a polynomial in x ofdegree n whose coefficient ofxn is equal to one provided

m

Kn+1,m = 2-n n(l + cv
2
).

v=l

Note that Hm(l/v) Hm(v) = n:l0 + cv
2) p",(x).

Lemma 2 is stated in [1, p. 251] and in [3, p. 37].
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LEMMA 3. For any Pm(x) defined as before and n ~ m

min Jl ] xn + A lxn- l + ... + An I dx
{Akl -1 Pm(X)

_ Jl I Un(X, Pm)] dx - 2K
- -1 Pm(X) - n+1.m .

The proof of Lemma 3 is to be found in [1, p. 251].

LEMMA 4. Let Ya(x) be a polynomial in x ofdegree a defined by

Yaex) = 1 + t2 - 2t cos[a cos- l (x)]

and Pa(x) be its canonical form as defined in Definition (i). Then Yaex) =
n:~1 (1 + c.2) pix) where c. are the appropriate constants defined in
Definition eii). Furthermore, Haev), the modified image of Yaex) under the
mapping x = O/2)(v + (l/v» is given by

Ha(v) = va - t.

The proof is omitted.

LEMMA 5. For Pa(x) defined as in Lemma 4, we have that sign Um+aCx, Pa)
is orthogonal on [-1,1] to U;(x) 0 ~j ~ m + a - I, j oF m; for all non­
negative integers m and a.

Proof With x = cos () and v = eiO :

sign Um+ix, Pa)

= ~ f _1_ [(vm- a+l Ha(V)_)2r~1 _ (va- m- l HiI/v) )2r+l]
7Ti r~O 2r + 1 HiI/v) Haev)

(c.f. [I, p. 252]). Therefore

where

I r = ii {' [v(Hl) - V- 1i+l)]

X [(vm-a+l Hiv) )2r+l _ (va- m - l Ha(l/v) )2r+1] dB
Ha(I/v) Haev)

= 1.- J v(i+ll+(m-a+1)(2r+l) [ Hiv) ]2r+1 dv
2i Ivl~1 Ha(l/v) iv
_~ r v1m- a+1)(2r+1)-IJ+1) [ Ha(v) ]2r+l dv

2i Jlvl~1 Ha(l/v) iv .

Note 1/[HaCl/v») = va/[l - vat] has poles at I/cv I I/c v I ;? I.
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By the theorem of residues, the first term of the last equation gives zero
contribution for r ? 0, m ? 0, and all j ? 0, whereas the second term gives
zero contribution for r ? 1, m ? 0, a ? 0, and 0 ~j ~ 3m + 1.

Now for r = 0, we consider the following cases for the second term.

(a) j ~ m - 1:

by the theorem of residues.

(b) j = m:

(c) m <j ~ m + a-I (a > 1):

Set

f
1T (eiae - t)

([> (J') =:= ei(m-i)e . dO.
m,a -1T 1 - teWe

Make the change of variable 0 = ep + (27Tla).

f
1T-<21Tla) (eiad> t)

([> (j) = e i (m-j)(21T/a) . ei(m-i)d> -. dep
m,a • -1T-(Z1T!a) 1 - tewd>

by periodicity. This is contradictory unless

for m + 1 ~j ~ m + a-I.

1.4. PARTIAL BEST ApPROXIMATION

THEOREM. Let a, b be non-negative integers a > 0 and

Then

00

f(x) = I tiUai+b(X)
i~O

I t I < 1 (1.2)

f(x) = Ub(X) - tUb_aCx)
1 + t 2 - 2t cos a(cos-1 x) . (1.3)
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Furthermore, for m = ak + b and em = t kj(1 - (2):

k 1"+2
p';;,n(X) = qm(X) == to l i Uai+b(X) + 1 _ t2 Uak+b(X) (1.4)

P} (f) = 2 I t jk+I (1.5)
m,n 1 - t2

for m :::;; n < m + a.

Proof (1,3) follows from (1.2) since

and the right-hand side is a convergent geometric series for I t I < I. Therefore

f( ) = _1_ sin(b + 1)0 - 1 sin(b - a + 1)0
x sin 8 1 + t 2 - 2t cos a8

from which the result follows.
Let us first consider n = m. Set E(X) = f(x) - qm(x). Then putting

x = cos 8, we obtain

(
Sin[a(k + I) + b + 1]8 - 21 sin[ak + b + 1]8 )

t k +I + t 2 sin[a(k - 1) + b + 1]8
E(X) = (I - t 2) sin 8(1 + t 2 - 2t cos a8) (1.6)

Putting Ya(x) = 1 + t 2 - 2t cos a (cos-I x):

N = a(k + I) + b and v = ei8

tk+I v(N+lJ-2a(va - t)2 - v2a-(N+lJ(v-a - 1)2

E(X) = J""=t"2 Ya(X)(v - (1jv»

Therefore, by Lemma 4 and the note on Lemma 2:

tk+I v<N+lJ-2aHa2(v) - v2a-<N+UHa2(1jv)
E(X) = J""=t"2 Hiv) Ha(ljv)(v - Ojv» •

Thus,

by Lemma 3.
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Since the approximation of f(x) by a polynomial from the class Pm.m is
equivalent here to the minimization (by norm) of a rational form whose
numerator is a polynomial of degree N = m + a with its highest coefficient
prescribed and whose denominator is a prescribed polynomial of degree a in x,
positive on the given interval, we have from Lemma 3 that E(X) is minimal
and P~.m(x) = qm(x),
P~.m(x) is obviously unique, due to the determinateness of UN(x, Pa).
Now, sign (f(x) - qm(x)) = ± sign Urn+a(x, Pa) and from Lemma 5,

sign Um+aCx, Pa) is orthogonal to Uj(x), 0 ~j ~ m + a - l,j oF m. Hence,
from Lemma 1, qm(x) is a partial best U-polynomial approximation in the L l

norm to f(x), among polynomials of degree m + d for 0 ~ d ~ a-I with
em = t k j(1 - t 2). We now prove its uniqueness.

From (1.6) we have E(X) = (tk+l/(l - t 2)) sin«m + 1)0 + f), where f is
defined by

(l - t 2) sin aO
sin f = Ya(cos 0)

(1.7)
-2t + (1 + t 2) cos aO

cos f = ----'---,--~--­
YuCcos 0)

From (1.7) we see that as 0 varies from 0 to TT, f increases from 0 to aTT.
Therefore (m + 1)0 + f increases continuously from 0 to (m + a + I)TT as
oruns from 0 to TT and E(X) has m + a alternations of sign, and hence, real
single roots on (-1,1). Let the roots of E(X) be ai on (-1, 1) for i = 1,...,
m + a. Suppose Pm.m+d is another partial best L l approximation for 0 < d ~
a - 1. Then by extending the argument in [4, Lemma 4.5], f - Pm.m+d
changes sign at the ai' From this it would follow that Pm.m+d - qm has
m + a roots, which is clearly impossible.

COROLLARY 1. If a, fJ are arbitrary real numbers; a, bare nonnegative­
integers a> 0; I t I < 1, m = ak + b, and m ~ n < m + a, then f(x) =

fJ + a L;:o tiUai+b(X) can be expressed as

f(x) = fJ(l + t2
) - 2fJt cos a(cos-l x) + aUb(x) - atUb_a(x) (1.8)

1 + t 2 - 2t cos a(cos-l x)

and

k t k+2

P';;'.nCx) = fJ + a L tiUai+b(X) + t_t 2 Uak+b(X)
J~O

E l(f) <: l? (f) = 2 I a I I t Ik+l
n "" rn.n 1 _ t2 •
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COROLLARY 2. For a = 1, ... , a the best £1 approximation from Pm-a to
lex) - (OI.t k/(1 - t 2

)) U",(x) is f3 + 01. L::~ tiUaHb(X) and

1 . _ ext I;Urn) _ 2 I ex i I t Ik+!

E",-a V 1 - t 2 - 1 ~ t 2

EXAMPLE (i).

a = l, ... ,a.

1
g(x) = X _ ,\ , A ~> 1.

Choose t = ,\ - (A2 - 1)1/2, then I t I < 1. Choose a = 1, b = 0, f3 = 0,
01. = -2t. Then (1.8) becomes l/(x - A). Thus,

E1 ( I ) = 4 I t !n~2
n.n x - A 1 - t 2

EXAMPLE (iia).

g(x) = x 2 _ ,\2 ' IAI>1.

Choose t = -(1 - 2A2) - 2A(~ 1 + A2)1/2. Then °< t < 1. Choose a = 2,
b = 0, f3 = 0, ex = -4t/(1 + t). Then (1.8) becomes 1/(x2 - A2) and

EXAMPLE (iib).

(
X

g x) = x 2 _ A2 ' IA!>1.

! fL I > 0.

With the same choice of t as in (iia) choose a = 2, b = 1, f3 = 0,01. = -2t.
Then

1 (X) 1 (X) 4 I t Ik+2
E2k+1. 2k+l x2 .- A2 = E2k+1.2k+2 x2 ~ A2 . = 1 - t 2

EXAMPLE (iiia).
I

g(x) =c fL2 + x2 '

Choose t = -(1 + 2fL2) + 2fL(1 + fL2)l/2. Then -1 < t < 0. Choose a = 2,
b = 0, f3 = 0, ex = -4t/(1 + t). Then (1.8) becomes 1/(fL2 + x2) and
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EXAMPLE (iiib).
x

g(X) = fL2 + X2 ' I fL I > O.

With the same choice of 1as in (iiia) choose a = 2, b = 1, <X = 0, f3 = -21.
Then

1.5. CONCLUSION

The partial best L1 approximations described above possess the advantage
that their coefficients are readily available. Furthermore, one may show for
the rational functions considered, that if the proximity of the partial best
L1 approximation is expressed as the ratio of E:",n(g) to Enl(g) then, in the
limit. this is determined by the a priori factor I/O - 12

).
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