Best and Partial Best L_{1} Approximations by Polynomials to Certain Rational Functions

J. H. Freilich
Department of Mathematics, Imperial College, University of London, London S.W. 7, England

Communicated by Lothar Collatz

1.1. Introduction and Definition of the Problem

In this paper we are concerned exclusively with approximating real-valued functions of a real variable by real polynomials, on the interval $[-1,1]$.

Let $p_{n}(A, x) \equiv \sum_{i=0}^{n} a_{i} x^{i} \in P_{n}$ and $f(x) \in L[-1,1]$ be the space of integrable functions on $[-1,1] . p_{n}\left(A^{*}, x\right)$ is defined to be a best L_{1} approximation from P_{n} to $f(x)$ on $[-1,1]$ if

$$
E_{n}^{1}(f) \equiv \int_{-1}^{1}\left|f(x)-p_{n}\left(A^{*}, x\right)\right| d x \leqslant \int_{-1}^{1}\left|f(x)-p_{n}(A, x)\right| d x
$$

for all coefficient vectors A in Euclidean $n+1$-space. $E_{n}{ }^{1}(f)$ shall be referred to as the minimal, or best, L_{1} deviation of f with respect to P_{n}.

We denote by $U_{r}(x)$, the Chebyshev polynomial of the second kind of degree r for all real r. By a U-polynomial of degree N, we mean an expression of the form $\sum_{j=0}^{N} e_{j} U_{j}(x)$, where $\left\{e_{j}\right\}_{j=0}^{N}$ are real scalars. We let $P_{m, n}$ denote the class of all U-polynomials of degree n where e_{m} is fixed and nonzero for a particular $m \leqslant n$.

It follows from the argument in [1, p. 10] that there exists a $p_{m, n}^{*} \in P_{m, n}$ such that for $f(x) \in L[-1,1]$:

$$
\tilde{E}_{m, n}^{1}(f) \equiv \int_{-1}^{1}\left|f(x)-p_{m, n}^{*}(x)\right| d x \leqslant \int_{-1}^{1}\left|f(x)-p_{m, n}(x)\right| d x
$$

for all $p_{m, n} \in P_{m, n}$.
This $p_{m, n}^{*}$ is defined to be a partial best L_{1} approximation to f from P_{n}. The motivation for investigating the partial minimum phenomenon in L_{1} for this class of rational functions, stems from its analogue in uniform approximation. There, taking the Fourier expansion in Chebyshev polynomials of the first kind, Rivlin [5] has shown that the truncated series polynomial, suitably modified, is the best uniform approximation.

1.2. Best Approximation

Proposition. For λ, μ real, $|\lambda|>1, \mu \neq 0$, the functions
(i) $g(x)=\frac{1}{\lambda-x}$
(iia) $g(x)=\frac{1}{\lambda^{2}-x^{2}}$
(iib) $g(x)=\frac{x}{\lambda^{2}-x^{2}}$
(iiia) $g(x)=\frac{1}{\mu^{2}+x^{2}} \quad$ (iiib) $g(x)=\frac{x}{\mu^{2}+x^{2}}$
all have their unique best L_{1} approximations on $[-1,1]$ from P_{n} given by the polynomial interpolating $g(x)$ at the roots of $U_{n+1}(x)$ (cf. [4, Theorems 4.3 and 4.4]).

Explicit expressions can be found for the L_{1} deviation of these functions and their asymptotic behavior for k large is tabulated here:
(i) $E_{k}{ }^{1}\left(\frac{1}{\lambda-x}\right) \sim 4\left(\lambda-\left(\lambda^{2}-1\right)^{1 / 2}\right)^{k+2}$
(iia) $E_{2 k}^{1}\left(\frac{1}{\lambda^{2}-x^{2}}\right)=E_{2 k+1}^{1}\left(\frac{1}{\lambda^{2}-x^{2}}\right) \sim \frac{4}{\lambda}\left(\lambda-\left(\lambda^{2}-1\right)^{1 / 2}\right)^{2 k+3}$
(iib) $E_{2 k+1}^{1}\left(\frac{x}{\lambda^{2}-x^{2}}\right)=E_{2 k+2}^{1}\left(\frac{x}{\lambda^{2}-x^{2}}\right) \sim 4\left(\lambda-\left(\lambda^{2}-1\right)^{1 / 2}\right)^{2 k+4}$
(iiia) $E_{2 k}^{1}\left(\frac{1}{\mu^{2}+x^{2}}\right)=E_{2 k+1}^{1}\left(\frac{1}{\mu^{2}+x^{2}}\right) \sim \frac{4}{\mu}\left(\left(1+\mu^{2}\right)^{1 / 2}-\mu\right)^{2 k+3}$
(iiib) $E_{2 k+1}^{1}\left(\frac{x}{\mu^{2}+x^{2}}\right)=E_{2 k+2}^{1}\left(\frac{x}{\mu^{2}+x^{2}}\right) \sim 4\left(\left(1+\mu^{2}\right)^{1 / 2}-\mu\right)^{2 k+4}$.
The case $g(x)=1 /(\lambda-x)$ has been treated in [1, Addenda, Sects. 31, 32] and the others may be similarly derived.

1.3. Some Lemmas

We first present a sufficient condition for partial best L_{1} approximations, (c.f. [2, Corollary 1.5]).

Lemma 1. Let $f(x) \in L[-1,1]$. Then $p_{m, n}^{*}$ is a best L_{1} approximation to f from $P_{m, n}$ if

$$
\int_{-1}^{1} \operatorname{sign}\left(f(x)-p_{m, n}^{*}(x)\right) U_{j}(x) d x=0 \quad j=0,1, \ldots, n ; \quad j \neq m
$$

In the case $n=m, f \in C[-1,1]$, it is also true that $p_{m, n}^{*}$ is unique by extending the arguments in [4, Sect. 4.5].

Definition (i). Let $\alpha_{\nu}[\nu=1, \ldots, m]$ be the real or complex-conjugate roots of the polynomial

$$
\begin{equation*}
\rho_{m}(x)=\prod_{\nu=1}^{m}\left(1-\frac{x}{\alpha_{\nu}}\right) \quad m \geqslant 0 \tag{1.1}
\end{equation*}
$$

where $\rho_{m}(x)$ is positive in the interior of the interval $[-1,1]$ but is allowed simple roots at one or both ends of the interval. If $m=0$, we interpret this product as $1 . \rho_{m}(x)$ as expressed in (1.1) is defined to be in its canonical form.

We now introduce the mapping $x=(1 / 2)(v+(1 / v))$.
The real variable $x,|x| \leqslant 1$ is then related to the complex value v by the equation

$$
x=\frac{1}{2}\left(v+\frac{1}{v}\right) \quad|v|=1 \quad \operatorname{lm} v \geqslant 0
$$

Definition (ii). Define the complex constants c_{ν} by

$$
c_{\nu}^{2}-2 c_{\nu} \alpha_{\nu}+1=0 \quad\left|c_{\nu}\right| \leqslant 1 \quad[\nu=1, \ldots, m]
$$

Then

$$
\alpha_{\nu}=\frac{1}{2}\left(c_{\nu}+\frac{1}{c_{\nu}}\right)
$$

Definition (iii). Define $H_{m}(v)$ to be the modified image under the mapping $x=(1 / 2)(v+(1 / v))$ of the canonical polynomial $\rho_{m}(x)$ by

$$
H_{m}(v)=\prod_{v=1}^{m}\left(v-c_{v}\right)
$$

Lemma 2. With $\rho_{m}(x)$ defined as in Definition (i) and $H_{m}(v)$ defined as in Definition (iii) we have that for $n \geqslant m$

$$
U_{n}\left(x, \rho_{m}\right) \equiv K_{n+1, m}\left[v^{n+1-2 m} \frac{H_{m}(v)}{H_{m}(1 / v)}-v^{2 m-n-1} \frac{H_{m}(1 / v)}{H_{m}(v)}\right] \frac{\rho_{m}(x)}{v-(1 / v)}
$$

is a polynomial in x of degree n whose coefficient of x^{n} is equal to one provided

$$
K_{n+1, m}=2^{-n} \prod_{\nu=1}^{m}\left(1+c_{\nu}^{2}\right)
$$

Note that $H_{m}(1 / v) H_{m}(v)=\prod_{\nu=1}^{m}\left(1+c_{\nu}{ }^{2}\right) \rho_{m}(x)$.
Lemma 2 is stated in [1, p. 251] and in [3, p. 37].

Lemma 3. For any $\rho_{m}(x)$ defined as before and $n \geqslant m$

$$
\begin{aligned}
& \min _{\left\{A_{k}\right\}} \int_{-1}^{1} \frac{\left|x^{n}+A_{1} x^{n-1}+\cdots+A_{n}\right| d x}{\rho_{m}(x)} \\
& \quad=\int_{-1}^{1} \frac{\left|U_{n}\left(x, \rho_{m}\right)\right| d x}{\rho_{m}(x)}=2 K_{n+1, m} .
\end{aligned}
$$

The proof of Lemma 3 is to be found in [1, p. 251].
Lemma 4. Let $\gamma_{a}(x)$ be a polynomial in x of degree a defined $b y$

$$
\gamma_{a}(x)=1+t^{2}-2 t \cos \left[a \cos ^{-1}(x)\right]
$$

and $\rho_{a}(x)$ be its canonical form as defined in Definition (i). Then $\gamma_{a}(x)=$ $\prod_{v=1}^{a}\left(1+c_{v}{ }^{2}\right) \rho_{a}(x)$ where c_{v} are the appropriate constants defined in Definition (ii). Furthermore, $H_{a}(v)$, the modified image of $\gamma_{a}(x)$ under the mapping $x=(1 / 2)(v+(1 / v))$ is given by

$$
H_{a}(v)=v^{a}-t
$$

The proof is omitted.
Lemma 5. For $\rho_{a}(x)$ defined as in Lemma 4, we have that sign $U_{m+a}\left(x, \rho_{a}\right)$ is orthogonal on $[-1,1]$ to $U_{j}(x) 0 \leqslant j \leqslant m+a-1, j \neq m$; for all nonnegative integers m and a.

Proof. With $x=\cos \theta$ and $v=e^{i \theta}$:

$$
\begin{aligned}
& \operatorname{sign} U_{m+a}\left(x, \rho_{a}\right) \\
& \qquad=\frac{2}{\pi i} \sum_{r=0}^{\infty} \frac{1}{2 r+1}\left[\left(v^{m-a+1}-\frac{H_{a}(v)}{H_{a}(1 / v)}\right)^{2 r+1}-\left(v^{a-m-1} \frac{H_{a}(1 / v)}{H_{a}(v)}\right)^{2 r+1}\right]
\end{aligned}
$$

(c.f. [1, p. 252]). Therefore

$$
\int_{-1}^{1} \operatorname{sign} U_{m+a}\left(x, \rho_{a}\right) U_{j}(x) d x=\frac{2}{\pi i} \sum_{r=0}^{\infty} \frac{1}{2 r+1} I_{r}
$$

where

$$
\begin{aligned}
& I_{r}=\frac{1}{2 i} \int_{0}^{\pi}\left[v^{(j+1)}-v^{-(j+1)}\right] \\
& \times\left[\left(v^{n-a+1} \frac{H_{a}(v)}{H_{a}(1 / v)}\right)^{2 r+1}-\left(v^{a-n_{a}-1} \frac{H_{a}(1 / v)}{H_{a}(v)}\right)^{2 r+1}\right] d \theta \\
&= \frac{1}{2 i} \int_{|v|=1} v^{(j+1)+(m-a+1)(2 r+1)}\left[\frac{H_{a}(v)}{H_{a}(1 / v)}\right]^{2 r+1} \frac{d v}{i v} \\
&-\frac{1}{2 i} \int_{|v|=1} v^{(m-a+1)(2 r+1)-(j+1)}\left[\frac{H_{a}(v)}{H_{a}(1 / v)}\right]^{2 r+1} \frac{d v}{i v}
\end{aligned}
$$

Note $1 /\left[H_{a}(1 / v)\right]=v^{a} /\left[1-v^{a} t\right]$ has poles at $1 / c_{v}\left|1 / c_{v}\right| \geqslant 1$.

By the theorem of residues, the first term of the last equation gives zero contribution for $r \geqslant 0, m \geqslant 0$, and all $j \geqslant 0$, whereas the second term gives zero contribution for $r \geqslant 1, m \geqslant 0, a \geqslant 0$, and $0 \leqslant j \leqslant 3 m+1$.

Now for $r=0$, we consider the following cases for the second term.
(a) $j \leqslant m-1$:

$$
\int_{|v|=1} v^{m-j} \frac{\left(v^{a}-t\right)}{1-t^{a} t} \frac{d v}{i v}=0
$$

by the theorem of residues.
(b) $j=m$:

$$
\int_{|v|=1} \frac{\left(v^{a}-t\right)}{1-v^{a} t} \frac{d v}{i v} \neq 0 .
$$

(c) $m<j \leqslant m+a-1(a>1)$:

Set

$$
\Phi_{m, a}(j) \equiv \int_{-\pi}^{\pi} e^{i(m-j) \theta} \frac{\left(e^{i a \theta}-t\right)}{1-t e^{i a \theta}} d \theta
$$

Make the change of variable $\theta=\phi+(2 \pi / a)$.

$$
\begin{aligned}
\Phi_{m, a}(j) & =e^{i(m-j)(2 \pi / a)} \int_{-\pi-(2 \pi / a)}^{\pi-(2 \pi / a)} e^{i(m-j) \phi} \frac{\left(e^{i a \phi}-t\right)}{1-t e^{i a \phi}} d \phi \\
& =e^{i(m-j)(2 \pi / a)} \Phi_{m . a}(j)
\end{aligned}
$$

by periodicity. This is contradictory unless

$$
\Phi_{m, a}(j)=0 \quad \text { for } \quad m+1 \leqslant j \leqslant m+a-1
$$

1.4. Partial Best Approximation

Theorem. Let a, b be non-negative integers $a>0$ and

$$
\begin{equation*}
f(x)=\sum_{j=0}^{\infty} t^{j} U_{a j+b}(x) \quad|t|<1 \tag{1.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(x)=\frac{U_{b}(x)-t U_{b-a}(x)}{1+t^{2}-2 t \cos a\left(\cos ^{-1} x\right)} \tag{1.3}
\end{equation*}
$$

Furthermore, for $m=a k+b$ and $e_{m}=t^{k} /\left(1-t^{2}\right)$:

$$
\begin{gather*}
p_{m, n}^{*}(x)=q_{m}(x) \equiv \sum_{j=0}^{k} t^{j} U_{a j+b}(x)+\frac{t^{k+2}}{1-t^{2}} U_{a k+b}(x) \tag{1.4}\\
\tilde{E}_{m, n}^{1}(f)=\frac{2|t|^{k+1}}{1-t^{2}} \tag{1.5}
\end{gather*}
$$

for $m \leqslant n<m+a$.
Proof. (1.3) follows from (1.2) since

$$
\sum_{j=0}^{\infty} t^{j} U_{a j+b}(x)=\frac{1}{\sin \theta} \operatorname{Im}\left[e^{i(b+1) \theta} \sum_{j=0}^{\infty}\left(t e^{i a \theta}\right)^{j}\right]
$$

and the right-hand side is a convergent geometric series for $|t|<1$. Therefore

$$
f(x)=\frac{1}{\sin \theta} \frac{\sin (b+1) \theta-t \sin (b-a+1) \theta}{1+t^{2}-2 t \cos a \theta}
$$

from which the result follows.
Let us first consider $n=m$. Set $\epsilon(x)=f(x)-q_{m}(x)$. Then putting $x=\cos \theta$, we obtain

$$
\begin{equation*}
\epsilon(x)=\frac{t^{k+1}}{\left(1-t^{2}\right)} \frac{\binom{\sin [a(k+1)+b+1] \theta-2 t \sin [a k+b+1] \theta}{+t^{2} \sin [a(k-1)+b+1] \theta}}{\sin \theta\left(1+t^{2}-2 t \cos a \theta\right)} \tag{1.6}
\end{equation*}
$$

Putting $\gamma_{a}(x)=1+t^{2}-2 t \cos a\left(\cos ^{-1} x\right)$:

$$
\begin{gathered}
N=a(k+1)+b \quad \text { and } \quad v=e^{i \theta} \\
\epsilon(x)=\frac{t^{k+1}}{1-t^{2}} \frac{v^{(N+1)-2 a}\left(v^{a}-t\right)^{2}-v^{2 a-(N+1)}\left(v^{-a}-t\right)^{2}}{\gamma_{a}(x)(v-(1 / v))} .
\end{gathered}
$$

Therefore, by Lemma 4 and the note on Lemma 2:

$$
\epsilon(x)=\frac{t^{k+1}}{1-t^{2}} \frac{v^{(N+1)-2 a} H_{a}^{2}(v)-v^{2 a-(N+1)} H_{a}^{2}(1 / v)}{H_{a}(v) H_{a}(1 / v)(v-(1 / v))}
$$

Thus,

$$
\int_{-1}^{1}|\epsilon(x)| d x=\frac{|t|^{k+1}}{1-t^{2}} \frac{1}{K_{N+1, a}} \int_{-1}^{1}\left|\frac{U_{N}\left(x, \rho_{a}\right)}{\rho_{a}(x)}\right| d x=\frac{2|t|^{k+1}}{1-t^{2}}
$$

by Lemma 3.

Since the approximation of $f(x)$ by a polynomial from the class $P_{m, m}$ is equivalent here to the minimization (by norm) of a rational form whose numerator is a polynomial of degree $N=m+a$ with its highest coefficient prescribed and whose denominator is a prescribed polynomial of degree a in x, positive on the given interval, we have from Lemma 3 that $\epsilon(x)$ is minimal and $p_{m, m}^{*}(x)=q_{m}(x)$.
$p_{m, m}^{*}(x)$ is obviously unique, due to the determinateness of $U_{N}\left(x, \rho_{a}\right)$.
Now, sign $\left(f(x)-q_{m}(x)\right)= \pm \operatorname{sign} U_{m+a}\left(x, \rho_{a}\right)$ and from Lemma 5, $\operatorname{sign} U_{m+a}\left(x, \rho_{a}\right)$ is orthogonal to $U_{j}(x), 0 \leqslant j \leqslant m+a-1, j \neq m$. Hence, from Lemma $1, q_{m}(x)$ is a partial best U-polynomial approximation in the L_{1} norm to $f(x)$, among polynomials of degree $m+d$ for $0 \leqslant d \leqslant a-1$ with $e_{m}=t^{k} /\left(1-t^{2}\right)$. We now prove its uniqueness.

From (1.6) we have $\epsilon(x)=\left(t^{k+1} /\left(1-t^{2}\right)\right) \sin ((m+1) \theta+\psi)$, where ψ is defined by

$$
\begin{align*}
& \sin \psi=\frac{\left(1-t^{2}\right) \sin a \theta}{\gamma_{a}(\cos \theta)} \tag{1.7}\\
& \cos \psi=\frac{-2 t+\left(1+t^{2}\right) \cos a \theta}{\gamma_{a}(\cos \theta)}
\end{align*}
$$

From (1.7) we see that as θ varies from 0 to π, ψ increases from 0 to $a \pi$. Therefore $(m+1) \theta+\psi$ increases continuously from 0 to $(m+a+1) \pi$ as θ runs from 0 to π and $\epsilon(x)$ has $m+a$ alternations of sign, and hence, real single roots on $(-1,1)$. Let the roots of $\epsilon(x)$ be α_{i} on $(-1,1)$ for $i=1, \ldots$, $m+a$. Suppose $p_{m, m+d}$ is another partial best L_{1} approximation for $0<d \leqslant$ $a-1$. Then by extending the argument in [4, Lemma 4.5], $f-p_{m, m+d}$ changes sign at the α_{i}. From this it would follow that $p_{m, m+d}-q_{m}$ has $m+a$ roots, which is clearly impossible.

Corollary 1. If α, β are arbitrary real numbers; a, b are nonnegativeintegers $a>0 ;|t|<1, m=a k+b$, and $m \leqslant n<m+a$, then $f(x)=$ $\beta+\alpha \sum_{j=0}^{\infty} t^{j} U_{a j+b}(x)$ can be expressed as

$$
\begin{equation*}
f(x)=\frac{\beta\left(1+t^{2}\right)-2 \beta t \cos a\left(\cos ^{-1} x\right)+\alpha U_{b}(x)-\alpha t U_{b-a}(x)}{1+t^{2}-2 t \cos a\left(\cos ^{-1} x\right)} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{gathered}
p_{m, n}^{*}(x)=\beta+\alpha \sum_{j=0}^{k} t^{j} U_{a j+b}(x)+\frac{\alpha t^{k+2}}{1-t^{2}} U_{a k+b}(x) \\
E_{n}^{1}(f) \leqslant \tilde{E}_{m, n}^{1}(f)=\frac{2|\alpha||t|^{k+1}}{1-t^{2}}
\end{gathered}
$$

Corollary 2. For $\sigma=1, \ldots$, a the best L_{1} approximation from $P_{m-\sigma}$ to $f(x)-\left(\alpha t^{k} /\left(1-t^{2}\right)\right) U_{m}(x)$ is $\beta+\alpha \sum_{j=0}^{k-1} t^{j} U_{a j+b}(x)$ and

$$
E_{m-\sigma}^{1}\left(f-\frac{\alpha t^{k} U_{m}}{1-t^{2}}\right)=\frac{\left.2|\alpha| t\right|^{i+1}}{1-t^{2}} \quad \sigma=1, \ldots, a
$$

Example (i).

$$
g(x)=\frac{1}{x-\lambda}, \quad \lambda>1
$$

Choose $t=\lambda-\left(\lambda^{2}-1\right)^{1 / 2}$, then $|t|<1$. Choose $a=1, b=0, \beta=0$, $\alpha=-2 t$. Then (1.8) becomes $1 /(x-\lambda)$. Thus,

$$
\begin{gathered}
p_{n, n}^{*}(x)=-2 t \sum_{j=0}^{n-1} t^{j} U_{j}(x)-\frac{2 t^{n+1}}{1-t^{2}} U_{n}(x) \\
\widetilde{E}_{n, n}^{1}\left(\frac{1}{x-\lambda}\right)=\frac{4|t|^{n+2}}{1-t^{2}}
\end{gathered}
$$

Example (iia).

$$
g(x)=\frac{1}{x^{2}-\lambda^{2}}, \quad|\lambda|>1
$$

Choose $t=-\left(1-2 \lambda^{2}\right)-2 \lambda\left(-1+\lambda^{2}\right)^{1 / 2}$. Then $0<t<1$. Choose $a=2$, $b=0, \beta=0, \alpha=-4 t /(1+t)$. Then (1.8) becomes $1 /\left(x^{2}-\lambda^{2}\right)$ and

$$
\tilde{E}_{2 k, 2 k}^{1}\left(\frac{1}{x^{2}-\lambda^{2}}\right)=\tilde{E}_{2 k, 2 k+1}^{1}\left(\frac{1}{x^{2}-\lambda^{2}}\right)=\frac{8|t|^{k+2}}{(1+t)\left(1-t^{2}\right)} .
$$

Example (iib).

$$
g(x)=\frac{x}{x^{2}-\lambda^{2}}, \quad|\lambda|>1
$$

With the same choice of t as in (iia) choose $a=2, b=1, \beta=0, \alpha=-2 t$. Then

$$
\tilde{E}_{2 k+1,2 k+1}^{1}\left(\frac{x}{x^{2}-\lambda^{2}}\right)=\tilde{E}_{2 k+1,2 k+2}^{1}\left(\frac{x}{x^{2}-\lambda^{2}}\right)=\frac{\left.4 \backslash t\right|^{k+2}}{1-t^{2}}
$$

Example (iiia).

$$
g(x)=\frac{1}{\mu^{2}+x^{2}}, \quad|\mu|>0
$$

Choose $t=-\left(1+2 \mu^{2}\right)+2 \mu\left(1+\mu^{2}\right)^{1 / 2}$. Then $-1<t<0$. Choose $a=2$, $b=0, \beta=0, \alpha=-4 t /(1+t)$. Then (1.8) becomes $1 /\left(\mu^{2}+x^{2}\right)$ and

$$
\tilde{E}_{2 k, 2 k}^{1}\left(\frac{1}{\mu^{2}+x^{2}}\right)=\widetilde{E}_{2 k, 2 k+1}^{1}\left(\frac{1}{\mu^{2}+x^{2}}\right)=\frac{8|t|^{k+2}}{(1-|t|)\left(1-t^{2}\right)}
$$

Example (iiib).

$$
g(x)=\frac{x}{\mu^{2}+x^{2}}, \quad|\mu|>0 .
$$

With the same choice of t as in (iiia) choose $a=2, b=1, \alpha=0, \beta=-2 t$. Then

$$
\tilde{E}_{2 k+1,2 k+1}^{1}\left(\frac{1}{\mu^{2}+x^{2}}\right)=\tilde{E}_{2 k+1,2 k+2}^{1}\left(\frac{x}{\mu^{2}+x^{2}}\right)=\frac{4|t|^{\mid k+2}}{1-t^{2}} .
$$

1.5. Conclusion

The partial best L_{1} approximations described above possess the advantage that their coefficients are readily available. Furthermore, one may show for the rational functions considered, that if the proximity of the partial best L_{1} approximation is expressed as the ratio of $\widetilde{E}_{m, n}^{1}(g)$ to $E_{n}{ }^{1}(g)$ then, in the limit, this is determined by the a priori factor $1 /\left(1-t^{2}\right)$.

Acknowledgments

The author expresses his gratitude to Dr. T. J. Rivlin for reading the original draft and suggesting improvements and to Prof. L. Collatz for providing valuable criticism.

References

1. N. I. Akhiezer, "Theory of Approximation," Ungar, New York, 1956.
2. B. R. Kripke and T. J. Rivlin, Approximation in the Metric of $L^{1}(x, \mu)$, Trans. Amer. Math. Soc. 119 (1965), 101-122.
3. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, New York, 1967.
4. J. Rice, "Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1964.
5. T. J. Rivlin, Polynomials of best uniform approximation, Numer. Math. 4 (1962), 345-349.
